Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Blood ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558106

RESUMO

CAR-T cells hold promise as a therapy for B-cell-derived malignancies, yet despite their impressive initial response rates, a significant proportion of patients ultimately experience relapse. While recent studies have explored the mechanisms of in vivo CAR-T cell function, little is understood about the activation of surrounding CARneg bystander T-cells and their potential to enhance tumor responses. We performed single-cell RNA-Seq (scRNA-Seq) on non-human primate (NHP) and patient-derived T-cells to identify the phenotypic and transcriptomic hallmarks of bystander activation of CARneg T-cells following B-cell targeted CAR-T cell therapy. Utilizing a highly translatable CD20 CAR NHP model, we observed a distinct population of activated CD8+ CARneg T-cells emerging during CAR-T cell expansion. These bystander CD8+ CARneg T-cells exhibited a unique transcriptional signature with upregulation of NK-cell markers (KIR3DL2, CD160, KLRD1), chemokines and chemokine receptors (CCL5, XCL1, CCR9), and downregulation of naive T-cell-associated genes (SELL, CD28). A transcriptionally similar population was identified in patients following Tisagenlecleucel infusion. Mechanistic studies revealed that IL-2 and IL-15 exposure induced bystander-like CD8+ T-cells in a dose dependent manner. In vitro activated and patient-derived T-cells with the bystander phenotype efficiently killed leukemic cells through a TCR-independent mechanism. Collectively, this dataset provides the first comprehensive identification and profiling of CARneg bystander CD8+ T-cells following B-cell targeting CAR-T cell therapy and suggests a novel mechanism through which CAR-T cell infusion might trigger enhanced anti-leukemic responses.

2.
Blood ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447038

RESUMO

Fanconi anemia (FA) is an inherited DNA repair disorder characterized by bone marrow (BM) failure, developmental abnormalities, myelodysplasia, and leukemia and solid tumor predisposition. Allogeneic hematopoietic stem cell transplantation (allo-HSCT), a mainstay treatment, is limited by conditioning regimen-related toxicity and graft-versus-host disease (GVHD). Antibody-drug-conjugates (ADCs) targeting hematopoietic stem cells (HSCs) can open marrow niches permitting donor stem cell alloengraftment. Here, we report that single dose anti-mouse CD45-targeted-ADC (CD45-ADC) facilitated stable, multilineage chimerism in 3 distinct FA mouse models representing 90% of FA complementation groups. CD45-ADC profoundly depleted host stem cell enriched LineageSca1+cKit+ cells within 48 hours. Fanca-/- recipients of minor-mismatched BM and single dose CD45-ADC had peripheral blood (PB) mean donor chimerism >90%; donor HSCs alloengraftment was verified in secondary recipients. In Fancc-/- and Fancg-/- recipients of fully allogeneic grafts, PB mean donor chimerism was 60-80% and 70-80%, respectively. The mean percent donor chimerism in BM and spleen mirrored PB results. CD45-ADC conditioned mice did not have clinical toxicity. A transient <2.5-fold increase in hepatocellular enzymes and mild-to-moderate histopathological changes were seen. Under GVHD allo-HSCT conditions, wildtype and Fanca-/- recipients of CD45-ADC had markedly reduced GVHD lethality compared to lethal irradiation. Moreover, single dose anti-human CD45-ADC given to rhesus macaque nonhuman primates on days -6 or -10 was at least as myeloablative as lethal irradiation. These data suggest that CD45-ADC can potently promote donor alloengraftment and hematopoiesis without significant toxicity or severe GVHD, as seen with lethal irradiation, providing strong support for clinical trial considerations in highly vulnerable FA patients.

3.
Blood ; 143(12): 1124-1138, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38153903

RESUMO

ABSTRACT: The CD161 inhibitory receptor is highly upregulated by tumor-infiltrating T cells in multiple human solid tumor types, and its ligand, CLEC2D, is expressed by both tumor cells and infiltrating myeloid cells. Here, we assessed the role of the CD161 receptor in hematological malignancies. Systematic analysis of CLEC2D expression using the Cancer Cell Line Encyclopedia revealed that CLEC2D messenger RNA was most abundant in hematological malignancies, including B-cell and T-cell lymphomas as well as lymphocytic and myelogenous leukemias. CLEC2D protein was detected by flow cytometry on a panel of cell lines representing a diverse set of hematological malignancies. We, therefore, used yeast display to generate a panel of high-affinity, fully human CD161 monoclonal antibodies (mAbs) that blocked CLEC2D binding. These mAbs were specific for CD161 and had a similar affinity for human and nonhuman primate CD161, a property relevant for clinical translation. A high-affinity CD161 mAb enhanced key aspects of T-cell function, including cytotoxicity, cytokine production, and proliferation, against B-cell lines originating from patients with acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and Burkitt lymphoma. In humanized mouse models, this CD161 mAb enhanced T-cell-mediated immunity, resulting in a significant survival benefit. Single cell RNA-seq data demonstrated that CD161 mAb treatment enhanced expression of cytotoxicity genes by CD4 T cells as well as a tissue-residency program by CD4 and CD8 T cells that is associated with favorable survival outcomes in multiple human cancer types. These fully human mAbs, thus, represent potential immunotherapy agents for hematological malignancies.


Assuntos
Neoplasias Hematológicas , Neoplasias , Animais , Camundongos , Humanos , Linfócitos T CD4-Positivos , Imunidade Celular , Linfócitos T CD8-Positivos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/genética
4.
Blood Adv ; 7(16): 4647-4657, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37603347

RESUMO

The majority of patients with chronic graft-versus-host disease (cGVHD) are steroid refractory (SR), creating a need for safe and effective therapies. Subcutaneous low-dose interleukin-2 (LD IL-2), which preferentially expands CD4+ regulatory T cells (Tregs), has been evaluated in 5 clinical trials at our center with partial responses (PR) in ∼50% of adults and 82% of children by week 8. We now report additional real-world experience with LD IL-2 in 15 children and young adults. We conducted a retrospective chart review of patients with SR-cGVHD at our center who received LD IL-2 from August 2016 to July 2022 not on a research trial. The median age at start of LD IL-2 was 10.4 years (range, 1.2-23.2 years) at a median of 234 days from cGVHD diagnosis (range, 11-542 days). Patients had a median of 2.5 (range, 1-3) active organs at LD IL-2 start and received a median of 3 (range, 1-5) prior therapies. The median duration of LD IL-2 therapy was 462 days (range, 8-1489 days). Most patients received 1 × 106 IU/m2 per day. There were no serious adverse effects. The overall response rate in 13 patients who received >4 weeks of therapy was 85% (complete response, n = 5; PR, n = 6) with responses in diverse organs. Most patients significantly weaned corticosteroids. Tregs preferentially expanded with a median peak fold increase of 2.8 in the ratio of Tregs to CD4+ conventional T cells (range, 2.0-19.8) by 8 weeks on therapy. LD IL-2 is a well-tolerated, steroid-sparing agent with a high response rate in children and young adults with SR-cGVHD.


Assuntos
Doença Enxerto-Hospedeiro , Interleucina-2 , Criança , Humanos , Adulto Jovem , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Imunoterapia , Interleucina-2/administração & dosagem , Estudos Retrospectivos , Lactente , Pré-Escolar , Adolescente
6.
Proc Natl Acad Sci U S A ; 113(43): E6669-E6678, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27791036

RESUMO

Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica , Glucosefosfato Desidrogenase/genética , Leucemia Mieloide Aguda/genética , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Combinada , Feminino , Glucosefosfato Desidrogenase/antagonistas & inibidores , Glucosefosfato Desidrogenase/metabolismo , Humanos , Hidrazinas/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Oxirredução , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismo
8.
Clin Cancer Res ; 21(6): 1360-72, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25547679

RESUMO

PURPOSE: Although tyrosine kinase inhibitors (TKI) can be effective therapies for leukemia, they fail to fully eliminate leukemic cells and achieve durable remissions for many patients with advanced BCR-ABL(+) leukemias or acute myelogenous leukemia (AML). Through a large-scale synthetic lethal RNAi screen, we identified pyruvate dehydrogenase, the limiting enzyme for pyruvate entry into the mitochondrial tricarboxylic acid cycle, as critical for the survival of chronic myelogenous leukemia (CML) cells upon BCR-ABL inhibition. Here, we examined the role of mitochondrial metabolism in the survival of Ph(+) leukemia and AML upon TK inhibition. EXPERIMENTAL DESIGN: Ph(+) cancer cell lines, AML cell lines, leukemia xenografts, cord blood, and patient samples were examined. RESULTS: We showed that the mitochondrial ATP-synthase inhibitor oligomycin-A greatly sensitized leukemia cells to TKI in vitro. Surprisingly, oligomycin-A sensitized leukemia cells to BCR-ABL inhibition at concentrations of 100- to 1,000-fold below those required for inhibition of respiration. Oligomycin-A treatment rapidly led to mitochondrial membrane depolarization and reduced ATP levels, and promoted superoxide production and leukemia cell apoptosis when combined with TKI. Importantly, oligomycin-A enhanced elimination of BCR-ABL(+) leukemia cells by TKI in a mouse model and in primary blast crisis CML samples. Moreover, oligomycin-A also greatly potentiated the elimination of FLT3-dependent AML cells when combined with an FLT3 TKI, both in vitro and in vivo. CONCLUSIONS: TKI therapy in leukemia cells creates a novel metabolic state that is highly sensitive to particular mitochondrial perturbations. Targeting mitochondrial metabolism as an adjuvant therapy could therefore improve therapeutic responses to TKI for patients with BCR-ABL(+) and FLT3(ITD) leukemias.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Oligomicinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/genética , Modelos Animais de Doenças , Feminino , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Cetona Oxirredutases/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno , Superóxidos/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo
9.
J Hematol Oncol ; 6: 10, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23343252

RESUMO

BACKGROUND: We investigated the utility of bioluminescence imaging (BLI) using firefly luciferase in monoclonal and polyclonal populations of leukemia cells in vitro and in vivo. METHODS: Monoclonal and polyclonal human lymphoid and myeloid leukemia cell lines transduced with firefly luciferase were used for BLI. RESULTS: Kinetics and dynamics of bioluminescence signal were cell line dependent. Luciferase expression decreased significantly over time in polyclonal leukemia cells in vitro. Transplantation of polyclonal luciferase-tagged cells in mice resulted in inconsistent signal intensity. After selection of monoclonal cell populations, luciferase activity was stable, equal kinetic and dynamic of bioluminescence intensity and strong correlation between cell number and light emission in vitro were observed. We obtained an equal development of leukemia burden detected by luciferase activity in NOD-scid-gamma mice after transplantation of monoclonal populations. CONCLUSION: The use of monoclonal leukemia cells selected for stable and equal luciferase activity is recommended for experiments in vitro and xenograft mouse models. The findings are highly significant for bioluminescence imaging focused on pre-clinical drug development.


Assuntos
Modelos Animais de Doenças , Leucemia Experimental/patologia , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes , Fótons , Animais , Humanos , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Subunidade gama Comum de Receptores de Interleucina/fisiologia , Cinética , Leucemia Experimental/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas
10.
Immunol Res ; 55(1-3): 100-15, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22941562

RESUMO

Despite great advances in our understanding of the driving events involved in malignant transformation, only a small number of oncogenic drivers have been targeted and translated into tangible clinical benefit. Moreover, even when a targeted therapy can be shown to effectively inhibit an oncogenic driver, leading to cancer remission, disease persistence and/or relapse is typically inevitable. Reemergence of the cancer can result from either intrinsic or acquired resistance mechanisms that result in failure to eliminate all cancer cells. Intrinsic mechanisms of resistance include tumor heterogeneity and pathways that can compensate for the inhibition of the oncogenic driver. Acquired resistance mechanisms include mutation of the oncogenic driver to directly prevent drug-mediated inhibition and the activation of compensatory survival pathways. RNA interference (RNAi)-based screening provides a powerful approach for the interrogation of both intrinsic and acquired resistance mechanisms. The availability of short interfering (si)RNA libraries targeting all human and mouse genes has made it possible to perform large-scale unbiased screens to identify pathways that are specifically required in cancer cells of particular genotypes or following particular treatments, facilitating the design of potential new therapeutic strategies that may limit resistance mechanisms. In this review, we will discuss how RNAi screens can be used to uncover critical growth and survival pathways and aid in the identification of novel therapeutic targets for improved treatment of hematological malignancies.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hematológicas/genética , Interferência de RNA , Animais , Genômica , Neoplasias Hematológicas/tratamento farmacológico , Humanos , RNA Interferente Pequeno/genética
11.
Cancer Cell ; 18(1): 74-87, 2010 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-20609354

RESUMO

Although Bcr-Abl kinase inhibitors have proven effective in the treatment of chronic myeloid leukemia (CML), they generally fail to eradicate Bcr-Abl(+) leukemia cells. To identify genes whose inhibition sensitizes Bcr-Abl(+) leukemias to killing by Bcr-Abl inhibitors, we performed an RNAi-based synthetic lethal screen with imatinib mesylate in CML cells. This screen identified numerous components of a Wnt/Ca(2+)/NFAT signaling pathway. Antagonism of this pathway led to impaired NFAT activity, decreased cytokine production, and enhanced sensitivity to Bcr-Abl inhibition. Furthermore, NFAT inhibition with cyclosporin A facilitated leukemia cell elimination by the Bcr-Abl inhibitor dasatinib and markedly improved survival in a mouse model of Bcr-Abl(+) acute lymphoblastic leukemia (ALL). Targeting this pathway in combination with Bcr-Abl inhibition could improve treatment of Bcr-Abl(+) leukemias.


Assuntos
Cálcio/metabolismo , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Fatores de Transcrição NFATC/metabolismo , Cromossomo Filadélfia , Proteínas Wnt/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose , Benzamidas , Western Blotting , Proliferação de Células , Ciclosporina/farmacologia , Citocinas/metabolismo , Dasatinibe , Feminino , Citometria de Fluxo , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Imunossupressores/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/genética , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Tiazóis/farmacologia , Células Tumorais Cultivadas , Proteínas Wnt/genética
12.
Arch Biochem Biophys ; 493(2): 169-74, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19850003

RESUMO

Conformation affects a carotenoid's ability to bind selectively to proteins. We calculated adiabatic energy profiles for rotating the ring end-groups around the C6C7 bond and for flexing of the ring with respect to the polyene chain. The choice of computational methods is important. A low, 4.2 kcal/mol barrier to rotation exists for a beta-ring. An 8.3 kcal/mol barrier exists for rotation of an epsilon-ring. Rotation of the epsilon-ring is sensitive to substitution at C3. In the absence of external forces neither beta- nor epsilon-rings are rotationally constrained. The nearly parallel alignment of the beta-ring to the C6C7 bond axis contrasts to the more perpendicular orientation of the epsilon-ring. Flexion of a beta-ring to the minimized epsilon-ring conformation requires approximately 23 kcal/mol; extension of the epsilon-ring to the minimized beta-ring conformation requires approximately 8 kcal/mol. Selectivity associated with beta- versus epsilon-rings is dominated by the inability of the beta-ring to flex to minimize protein/ring steric interactions and maximize van der Waal's attractions with the binding site.


Assuntos
Carotenoides/química , Modelos Moleculares , Estrutura Molecular , Termodinâmica
13.
Nutr Metab (Lond) ; 4: 12, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17498306

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is a disease with multiple risk factors, many of which appear to involve oxidative stress. Macular pigment, with its antioxidant and light-screening properties, is thought to be protective against AMD. A result has been the appearance of dietary supplements containing the macular carotenoids, lutein and zeaxanthin. More recently, a supplement has been marketed containing, in addition, the third major carotenoid of the macular pigment, meso-zeaxanthin. The purpose of the study was to determine the effectiveness of such a supplement in raising macular pigment density in human subjects. METHODS: A 120 day supplementation study was conducted in which 10 subjects were given gel-caps that provided 20 mg/day of predominantly meso-zeaxanthin, with smaller amounts of lutein and zeaxanthin. A second group of 9 subjects were given gel caps containing a placebo for the same 120 day period. Prior to and during the supplementation period, blood serum samples were analyzed by high performance liquid chromatography for carotenoid content. Similarly, macular pigment optical density was measured by heterochromatic flicker photometry. Differences in response between the supplementation and placebo groups were tested for significance using a student's t-test. RESULTS: During supplementation with the carotenoids, blood samples revealed the presence of all three carotenoids. Macular pigment optical density, measured at 460 nm, rose at an average rate of 0.59 +/- 0.79 milli-absorbance unit/day in the 10 supplemented subjects. This was significantly different from the placebo group (9 subjects) for whom the average rate was -0.17 +/- 0.42 milli-absorbance units/day. CONCLUSION: We have shown for the first time that meso-zeaxanthin is absorbed into the serum following ingestion. The data indicate that a supplement containing predominantly meso-zeaxanthin is generally effective at raising macular pigment density, and may turn out to be a useful addition to the defenses against AMD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...